skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Krishnamurthy, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sciubba, Enrico (Ed.)
    It is very important to perform magnetostatic analysis accurately and efficiently when it comes to multi-objective optimization of designs of electromagnetic devices, particularly for inductors, transformers, and electric motors. A kernel free boundary integral method (KFBIM) was studied for analyzing 2D magnetostatics problems. Although KFBIM is accurate and computationally efficient, sharp corners can be a major problem for KFBIM. In this paper, an inverse discrete Fourier transform (DFT) based geometry reconstruction is explored to overcome this challenge for smoothening sharp corners. A toroidal inductor core with an air gap (C-core) is used to show the effectiveness of the proposed approach addressing the sharp corner problem. A numerical example demonstrates that the method works for the variable coefficient PDE. In addition, magnetostatic analysis for homogeneous and nonhomogeneous material is presented for the reconstructed geometry, and results carried out from KFBIM are compared with the results of FEM analysis for the original geometry to show the differences and the potential of the proposed method. 
    more » « less